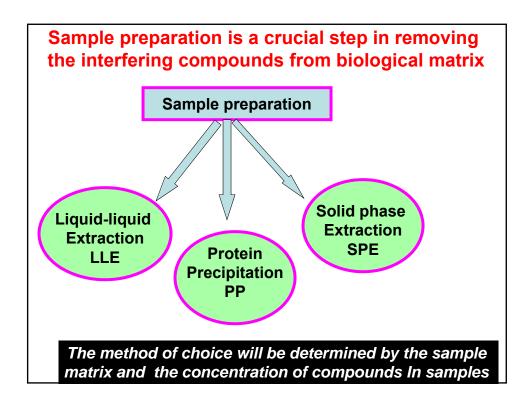
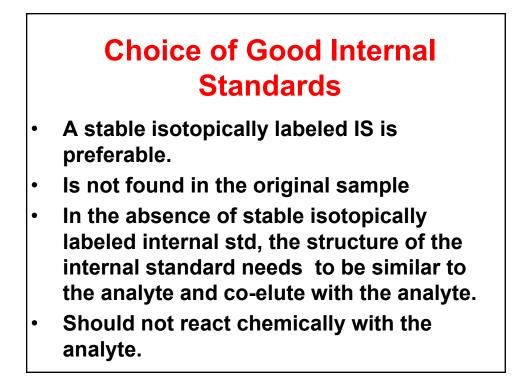
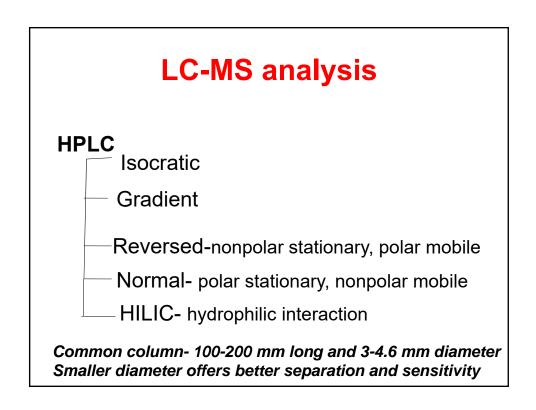
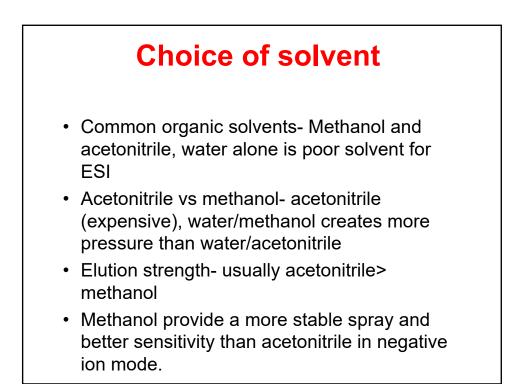

Validation

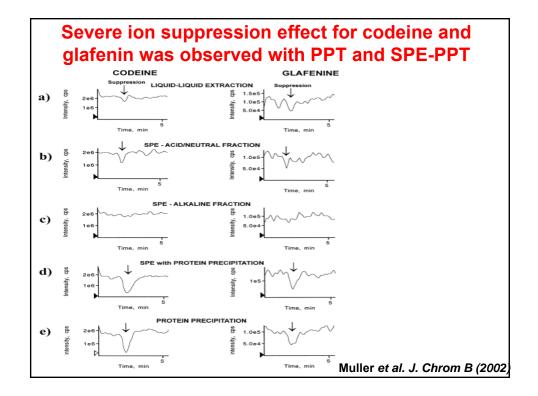

"All of the procedures that demonstrate that a particular method used for quantitative measurement of analytes in a given biological matrix, Such as blood, plasma, serum, or urine, is reliable and reproducible for the intended use" http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf


Untargeted metabolomics and method validation

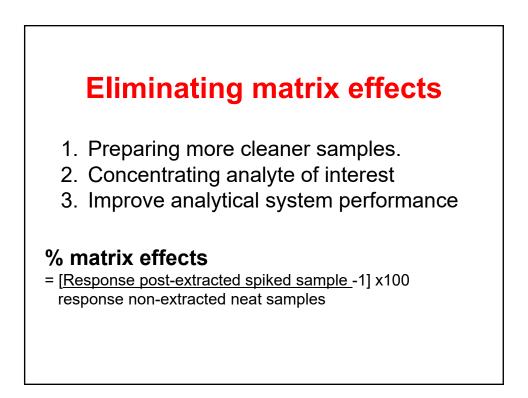
- No guidelines for validating analytical part in untargeted metabolomics.
- Unbiased differential, comprehensive analysis of metabolites in a biological sample.
- Comparison should be valid and the change in signals should be related to the concentrationi.e. precisely measured.
- Quality control samples, spiking with unnatural internal standard to monitor reproducibility
- Statistical analysis- similarity/differences between and within samples.

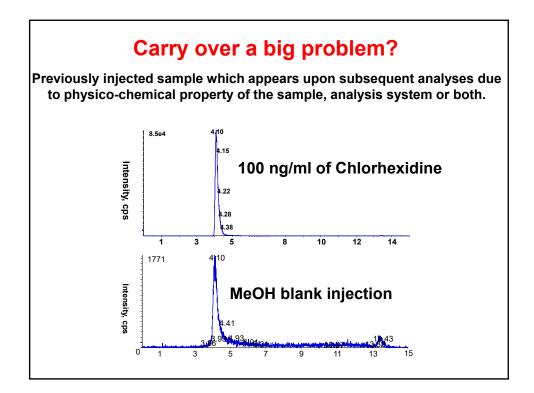


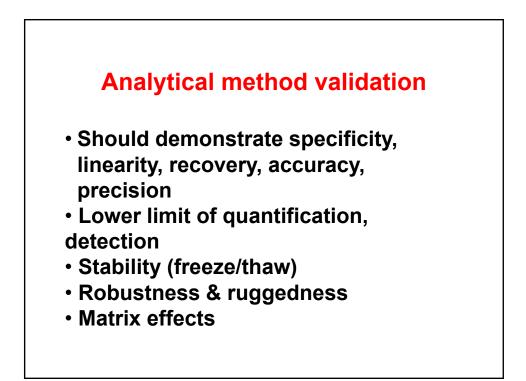


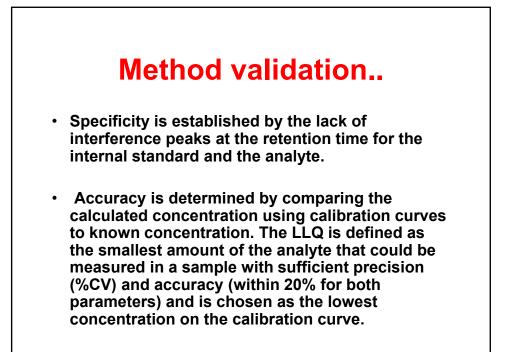


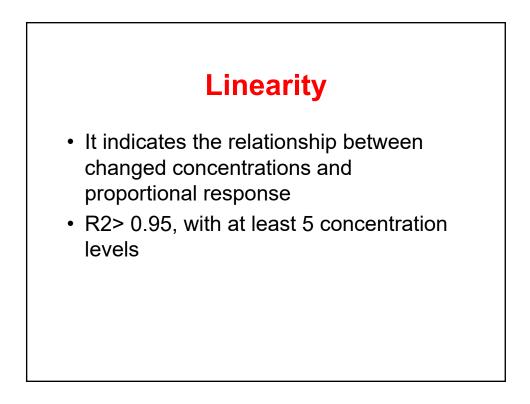
Problems encountered in LC-MS analysis Matrix effect on Ion suppression?

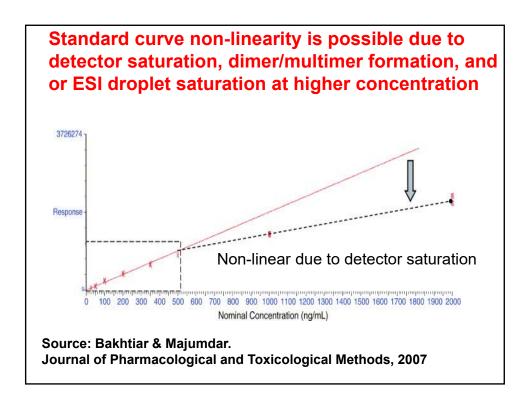

- The presence of endogenous substances from matrix, i.e., organic or inorganic molecules present in the sample and that are retained in the final extract
- Exogenous substances, i.e., molecules not present in the sample but coming from various external sources during the sample preparation

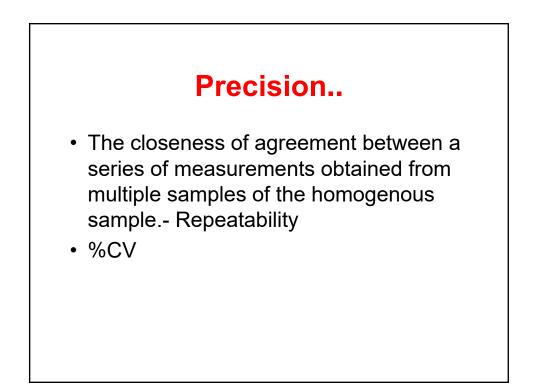










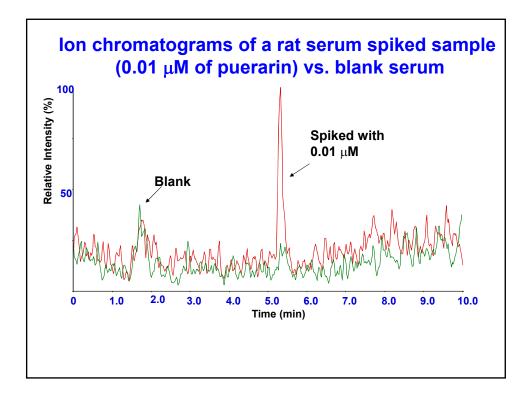


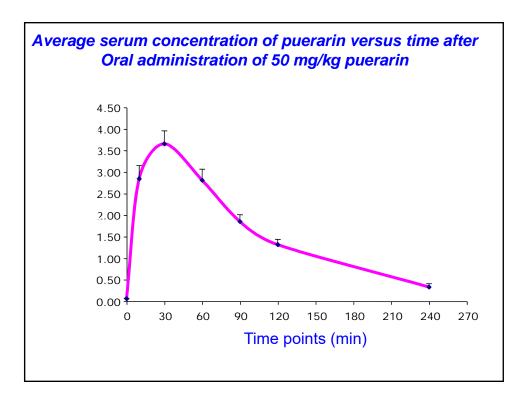
Robustness

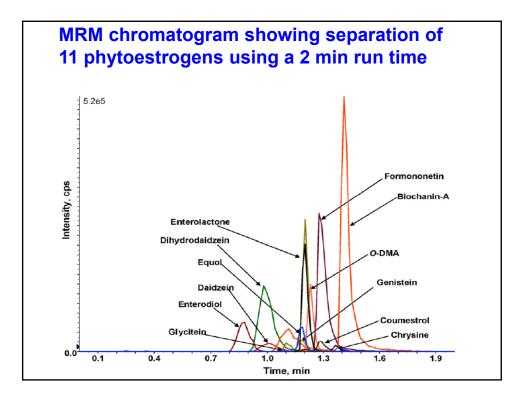
 Ability to remain unaffected by small but deliberate variations in the LC-MS/MS method parameters- such as pH in a mobile phase, composition of solvents, different lots of column, flow rates etc.

Ruggedness

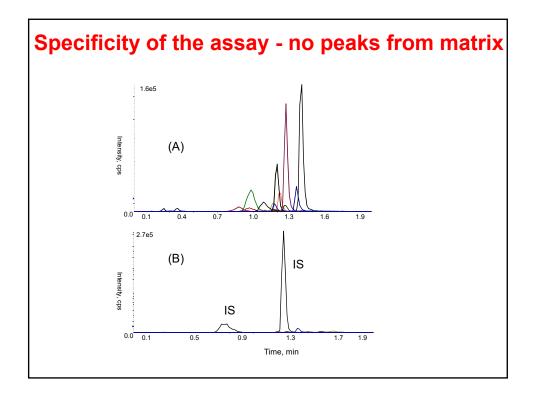
 Indicates degree of reproducibility of test results under a variety of conditions such as different labs, instruments and reagents etc.


Recovery


- Recovery is a ratio of the detector response of an analyte from an extracted sample to the detector response of the analyte in post extracted sample (spiked sample)
- %RE = <u>response extracted sample</u> x100 response post extracted spiked sample

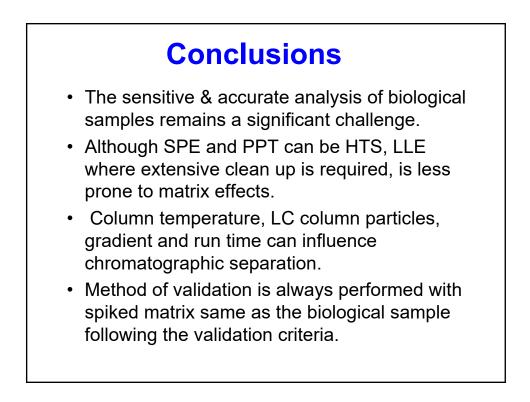

LC/MS/MS	Method for Puerarin
Column: Wate	ers X-Terra C18 with guard,
2.1 x	100 mm, 3.5 micron
Mobile Phase A: 10%	MeCN + 10 mM NH4OAc
Mobile Phase B: 70%	MeCN + 10mM NH4OAc
Gradient: 0 mi	nutes = 100% A
6 mi	nutes = 100% B
7 mi	nutes = 100% A
10 m	ninutes = Stop
Injection Volume:	20 ul
Flow Rate:	0.2 ml/min split flow
Mass Spectrometer:	Negative Electrospray
Mass Transitions:	415/267 (Puerarin)
	415/295 (Puerarin)
	269/149 (apigenin, IS)

oncentration (ng/ml)	Mean ± S.D.	CV (%)	Accuracy (%)
2.0	2.21 ± 0.16	7.00	110.7
5.0	5.22 ± 0.28	5.30	104.48
50	45.32 ± 2.53	5.60	90.64
500	473.60 ± 26.57	5.60	94.72
1000	1021.20 ± 71.53	7.00	102.12
5000	5340 ± 420.18	7.90	106.80


able 2.			
	teristics of the meth	nod for the deterr	nination of puerarin in rat
erum (n =5)			
Concentration (ng/ml)	Mean ± S.D.	CV (%)	Accuracy (%)
2.0	2.21 ± 0.16	7.00	110.7
4.0	3.96 ± 0.30	7.90	99.20
8.32	7.32 ± 1.00	14.40	113.30
20	19.20 ± 1.20	6.30	96.00
200	203.20 ± 19.41	9.60	101.60
832	821.18 ± 55.86	6.80	101.31
2000	2240 ± 96.70	4.30	112.00

Analyte	Q1/Q3	Dwell (msec)	DP (V)	CE (eV)	CXP (V)
Equol	314/119	50	-65	-30	-5
Daidzein	253/132	50	-65	-55	-10
Dihydrodaizein	255/149	50	-50	-30	-9
O-DMA	257/108	50	-70	-40	-5
Genistein	269/133	50	-75	-40	-5
Glycitein	283/184	50	-65	-45	-5
Formononetin	267/251	50	-75	-35	-5
Coumestrol	267/91	50	-50	-50	-2
Biochanin A	283/268	50	-70	-30	-5
Enterolactone	297/253	50	-80	-30	-10
Enterodiol	301/253	50	-70	-30	-9
Phenophthalein	317/93	50	-50	-20	-5
4-MU	175/119	50	-50	-38	-4
Chrysin	253/143	50	-50	-50	-5
DP = Declustering	potential				
CE = Collision en	erav				

Quuin	tification (LLOQ) o	n analytes			
Analyte	Calibration range (ng/ml)	LLOQ (ng/ml)			
Equol	1 - 5,000	1			
Daidzein	2 - 5,000	2			
DHD	2 - 5,000	2			
O-DMA	1 - 5,000	1			
genistein	2 - 5,000	2			
Glycitein	5 - 5,000	5			
Formononetin	1 - 5,000	1			
Coumetsrol	1 - 5,000	1			
Bichanin-A	1 - 5,000	1			
6-OH-ODMA	20 - 5,000	20			
Enterodiol	2 - 5,000	2			
Enterolactone	1 - 5,000	1			


Precision and accuracy of quality control samples

Analyte	Nominal concentration (ng/mL)	Accuracy (S	Accuracy (%)			(%CV)		Inter-day
		Day 1	Day 2	Day 3	Day 1	Day 2	Day 3	
Equol	50	100.42	90.13	96.60	2.01	4.33	5.11	3.74
	500	103.30	99.85	114.66	2.31	5.61	1.93	2.97
	2000	97.60	89.90	103.96	6.11	10.61	10.13	8.34
Daidzein	50	99.98	102.73	94.04	4.35	6.44	8.23	6.62
	500	101.48	98.31	97.73	3.14	5.44	7.42	5.38
	2000	92.50	87.41	86.03	2.88	3.61	3.96	3.58
Dihydrodaidzein	50	103.00	100.15	101.66	3.94	1.43	4.99	3.63
	500	103.79	95.20	106.00	3.96	6.44	3.35	4.34
	2000	91.70	90.40	96.33	1.68	5.80	6.60	2.82
O-DMA	50	104.00	93.72	96.51	5.16	4.71	5.80	5.32
	500	105.67	93.78	102.33	3.22	9.42	5.54	5.84
	2000	101.20	93.57	100.93	5.53	5.37	6.53	3.63
Genistein	50	107.66	106.83	99.08	3.97	3.37	6.65	4.86
	500	97.50	88.90	91.36	5.40	3.61	5.60	4.96
	2000	95.13	92.28	93.38	2.63	3.97	4.17	3.59

Comparison of precision intra-day and inter-day

Compound	Nominal Concentration		centration (ng/mL)
	(ng/mL)	autosampler at 4 ⁰ C, 72h	long storage -20 °C, 2 months
Equol	50	43.35 ± 2.50	45.68 ± 3.98
•	500	487.80 ± 9.20	475.66 ± 30.16
	2000	1793.33 ± 67.42	1921.66 ± 94.74
Daidzein	50	47.03 ± 2.50	50.83 ± 1.87
	500	534.20 ± 21.05	491.66 ± 7.17
	2000	1848.33 ± 72.77	1861.66 ± 71.67
Dihydrodaidzein	50	45.55 ± 1.97	47.52 ± 5.23
	500	485.83 ± 26.35	219.20 ± 15.90
	2000	1738.33 ± 85.18	828.50 ± 27.01
O-DMA	50	48.31 ± 3.75	54.80 ± 5.67
	500	469.16 ± 24.01	534.66 ± 28.57
	2000	1861.66 ± 114.61	2151.66 ± 110.89
Genistein	50	50.90 ± 3.19	51.16 ± 3.34
	500	487.33 ± 33.15	497.33 ± 37.59
	2000	1875.00 ± 116.40	2190.00 ± 11.83
Glycitein	50	44.31 ± 2.44	40.15 ± 1.98
	500	481.00 ± 39.11	489.50 ± 28.26
	2000	1886.66 ± 87.10	2045.00 ± 191.91
Formononetin	50	47.36 ± 4.16	47.58 ± 3.22
	500	512.33 ± 26.41	507.66 ± 27.82
	2000	2018.33 ± 106.09	1925.00 ± 167.06
Coumestrol	50	46.26 ± 6.68	56.80 ± 2.37
	500	549.33 ± 36.74	498.00 ± 26.1
	2000	2120.00 ± 104.30	1905.00 ± 128.17
Biochanin A	50	52.47 ± 2.27	56.10 ± 1.49
	500	444.00 ± 29.81	523.00 ± 23.34
	2000	1893.33 ± 202.06	2130.00 ± 88.31
Enterodiol	50	44.96 ± 3.45	46.84 ± 2.47
	500	488.16 ± 13.04	489.83 ± 20.79
	2000	1906.66 + 68.89	1963 33 + 119 27

		ODMA	Bio	Cm	Form	Gly	GN	O-DMA	DHD	Dz	Equol	onc.
73.60	78.62		84.10		87.36	94.49		72.79	98.95	87.57	91.04	
73.82	75.17		74.26	76.63	82.08	74.96		71.00	80.88	80.09	76.58	
92.78 77.70	92.50 92.30		54.84 67.67	81.52	93.22	91.18 92.45		81.97		86.49 79.57	85.70 87.32	-
	75.17 92.50 92.30	itein, Fo	74.26 54.84 67.67	86.97 81.52	82.08 80.15 93.22	74.96 91.18 92.45		71.00 71.70 81.97	80.88 89.39 95.02	80.09 86.49 79.57	76.58 85.70 87.32 aidzein	

